Search results for " continuity"
showing 10 items of 230 documents
Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces
2015
We show that the Heisenberg group is not minimal in looking down. This answers Problem 11.15 in `Fractured fractals and broken dreams' by David and Semmes, or equivalently, Question 22 and hence also Question 24 in `Thirty-three yes or no questions about mappings, measures, and metrics' by Heinonen and Semmes. The non-minimality of the Heisenberg group is shown by giving an example of an Ahlfors $4$-regular metric space $X$ having big pieces of itself such that no Lipschitz map from a subset of $X$ to the Heisenberg group has image with positive measure, and by providing a Lipschitz map from the Heisenberg group to the space $X$ having as image the whole $X$. As part of proving the above re…
A Knowledge Interface System for Information and Cyber Security Using Semantic Wiki
2018
Resilience against information and cyber security threats has become an essential ability for organizations to maintain business continuity. As bulletproof security is an unattainable goal, organizations need to concentrate to select optimal countermeasures against information and cyber security threats. Implementation of cyber risk management actions require special knowledge and resources, which especially small and medium-size enterprises often lack. Information and cyber security risk management establish knowledge intensive business processes, which can be assisted with a proper knowledge management system. This paper analyzes how Semantic MediaWiki could be used as a platform to assis…
Absolutely continuous variational measures of Mawhin's type
2011
Abstract In this paper we study absolutely continuous and σ-finite variational measures corresponding to Mawhin, F- and BV -integrals. We obtain characterization of these σ-finite variational measures similar to those obtained in the case of standard variational measures. We also give a new proof of the Radon-Nikodým theorem for these measures.
POINTS OF $\varepsilon$ -DIFFERENTIABILITY OF LIPSCHITZ FUNCTIONS FROM ${\bb R}^n$ TO ${\bb R}^{n-1}$
2002
This paper proves that for every Lipschitz function $f:{\bb R}^n\longrightarrow {\bb R}^m,\;m < n$ , there exists at least one point of $\varepsilon$ -differentiability of $f$ which is in the union of all $m$ -dimensional affine subspaces of the form $q_0+{\rm span}\{q_1,q_2,\ldots,q_m\},\;{\rm where}\;q_j(j=0,1,\ldots,m)$ are points in ${\bb R}^n$ with rational coordinates.
On Ekeland's variational principle in partial metric spaces
2015
In this paper, lower semi-continuous functions are used to extend Ekeland's variational principle to the class of parti al metric spaces. As consequences of our results, we obtain some fixed p oint theorems of Caristi and Clarke types.
A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space
2020
We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti-Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.
Convergence Properties of Genuine Bernstein–Durrmeyer Operators
2018
The genuine Bernstein–Durrmeyer operators have notable approximation properties, and many papers have been written on them. In this paper, we introduce a modified genuine Bernstein–Durrmeyer operators. Some approximation results, which include local approximation, error estimation in terms of the modulus of continuity and weighted approximation is obtained. Also, a quantitative Voronovskaya-type approximation will be studied. The convergence of these operators to certain functions is shown by illustrative graphics using MAPLE algorithms.
Business continuity of business models : Evaluating the resilience of business models for contingencies
2019
Company business models are vulnerable to various contingencies in the business environment that may unexpectedly render their business logic ineffective. In particular, technological advancements, such as the Internet of things, big data, sharing economy and crowdsourcing, have enabled new forms of business models that can effectively and abruptly make traditional business models obsolete. By disrupting or even diminishing companies’ revenue streams, environmental contingencies may present a significant threat to business continuity (BC). Evaluating the resilience of business models against these contingencies should therefore be a core area of BC. However, existing BC approaches tend to f…
Proper 1-ball contractive retractions in Banach spaces of measurable functions
2005
In this paper we consider the Wosko problem of evaluating, in an infinite-dimensional Banach space X, the infimum of all k > 1 for which there exists a k-ball contractive retraction of the unit ball onto its boundary. We prove that in some classical Banach spaces the best possible value 1 is attained. Moreover we give estimates of the lower H-measure of noncompactness of the retractions we construct. 1. Introduction Let X be an infinite-dimensional Banach space with unit closed ball B(X) and unit sphere S(X). It is well known that, in this setting, there is a retraction of B(X) onto S(X), that is, a continuous mapping R : B(X) ! S(X) with Rx = x for all x 2 S(X). In (4) Benyamini and Sternf…
Singular integrals on regular curves in the Heisenberg group
2019
Let $\mathbb{H}$ be the first Heisenberg group, and let $k \in C^{\infty}(\mathbb{H} \, \setminus \, \{0\})$ be a kernel which is either odd or horizontally odd, and satisfies $$|\nabla_{\mathbb{H}}^{n}k(p)| \leq C_{n}\|p\|^{-1 - n}, \qquad p \in \mathbb{H} \, \setminus \, \{0\}, \, n \geq 0.$$ The simplest examples include certain Riesz-type kernels first considered by Chousionis and Mattila, and the horizontally odd kernel $k(p) = \nabla_{\mathbb{H}} \log \|p\|$. We prove that convolution with $k$, as above, yields an $L^{2}$-bounded operator on regular curves in $\mathbb{H}$. This extends a theorem of G. David to the Heisenberg group. As a corollary of our main result, we infer that all …